Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Preventive Medicine ; (12): 415-418, 2006.
Article in Chinese | WPRIM | ID: wpr-290249

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effects of carboxymethyl chitosan calcium (CCC) on concentration of lead, calcium and zinc, and the liver antioxidative capacity in lead poisoned mice.</p><p><b>METHODS</b>Mice were randomly divided into 7 groups, including normal group, calcium carbonate group, lead-model group, and three experimental groups treated with CCC in three different doses, and the CaNa2EDTA positive control group. The lead poisoned mice model was established by giving water contained with lead acetate. CCC was administrated to mice i.g. once a day. Thirty days later, mice were killed and the concentrations of lead, calcium and zinc in blood, liver, brain and femur were determined by atomic absorption spectrophotometer. Maleic dialdehyde (MDA), total antioxidative capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities in liver were measured by using assay kit.</p><p><b>RESULTS</b>CCC significantly reduced the concentration of lead in blood, brain, liver and femur from about 1.56 microg/g, 13.38 microg/g, 16.15 microg/g, 1011.62 microg/g to about 0.50 microg/g, 5.57microg/g, 5.64 microg/g, 457.86 microg/g, and markedly increased the concentration of calcium in femur in lead poisoned mice. CCC had no significant side-effects on concentration of zinc in lead poisoned mice. The antioxidative profile was favorably changed as manifested by decreasing the level of MDA, increasing the activities of SOD, GSH-Px and T-AOC in livers of the in lead poisoned mice.</p><p><b>CONCLUSION</b>CCC might significantly advance the excretion of lead, increase the concentration of calcium in femur and the antioxidative capacity in lead-loaded mice.</p>


Subject(s)
Animals , Female , Mice , Brain Chemistry , Calcium , Metabolism , Chitosan , Pharmacology , Femur , Chemistry , Lead , Metabolism , Lead Poisoning , Metabolism , Liver , Chemistry , Mice, Inbred Strains , Zinc , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL